Tipping the Scales: Stem Cells May Help Prevent Obesity and More.

Scientists have found that the alteration of stem cell cilia can have a positive effect on weight loss.

 

In a recently published study from the Queen Mary University of London, scientists discovered a connection between the length of cilia [hair-like projections for cell movement] on stem cells and their proclivity towards differentiating into fat cells.  By restricting the elongation of stem cell cilia, the researchers were able to impede on the formation of new fat cells. Continue reading

Bone Regeneration Made Possible With Stem Cells

Epibone creates precisely measured scaffolding for stem cells to recreate damaged bone.

The New York-based startup Epibone intends to begin human testing on a procedure that will utilize stem cells to regenerate living bone tissue.  The researchers, originally from Columbia University, will apply autologous [the patient’s own] stem cells to nanofiber scaffolding of the desired size and shape and direct the stem cells to differentiate into a physical and genetic replica of the patient’s own bone. Continue reading

Bone Regeneration Technique Stimulates Stem Cells with Magnetic Nanoparticles.

Remote controlled nanoparticles may allow stem cells to regenerate bone tissue

Medical researchers from Keele University and Nottingham University have integrated remote controlled magnetic nanoparticles to incite the differentiation of stem cells into new bone tissue for the treatment of bone diseases, disorders, and injuries. In pre-clinical trials, the nanoparticles were coated with proteins that stimulate the stem cells, and then delivered directly to the damaged tissue via an external magnetic field. Continue reading

New York Times: The Eruption of Stem Cell Therapies.

Mr. Edgar Irastorza is one of thousands of people already benefiting from the progression of stem cell based therapies.

As reported on the front page of the New York Times Science section, clinical applications of stem cell based therapies are accelerating at a rate that will revolutionize the medical field in a matter of years.  In the United States alone, there are currently over 4000 therapies in clinical trials for the treatment of heart disease, blindness, spinal cord injuries, diabetes, H.I.V., and other diseases, injuries, and traumas. Continue reading

Osteoarthritis Stem Cell Treatment in Clinical Trial

The transplantation of stem cells into areas affected by osteoarthritis allow lost cartilage tissue to regenerate.

In recent clinical trials, researchers at the National University of Ireland Galway have successfully utilized adult stem cells to treat patients with osteoarthritis.  The treatment involves recovering the patients’ own [autologous] stem cells and then injecting the stem cells into cartilage to stimulate the regeneration of lost tissue. Continue reading

Stem Cells Immune to Damage from Leukemia Chemotherapy

Certain stem cells have been found to be immune to the bone-degenerative side effects of chemotherapy used against leukemia.

A research team, led by Dr. Eric Darling of Brown University, has found a potential source of stem cells to protect children with acute lymphoblastic leukemia against the adverse effects of the chemotherapy drug methotrexate (MTX).  Adipose-derived stem cells, which appear to be impervious to the bone-degenerative side effects of MTX, may allow children to undergo the chemotherapy treatment and then regain the lost bone tissue afterwards. Continue reading

Anti-Aging Properties of MSCs

Mesenchymal Stem Cells are able to stimulate muscle-building cells that lose function with age.

A recently published study by University of Illinois Kinesiology and Community Health Professor Marni Boppart has identified mesenchymal stem cells [MSCs] as a tool for rejuvenating muscle to prevent age-related injuries and disabilities.  In addition to their ability to differentiate into other cell types, MSCs were found to secrete growth factors that stimulate the activation of the multiple cell types comprising skeletal muscle, including muscle precursor cells and satellite cells, which lose function with age. Continue reading

Growing Teeth with Mesenchymal Stem Cells

Scientists are using mesenchymal stem cells to grow new organs in vivo.

Researchers at the Wyss Institute and Harvard School of Engineering and Applied Sciences have developed a self-shrinking gel that, when loaded with mesenchymal stem cells [MSCs], stimulates their ability to differentiate into teeth, bones, and organs in vivo [in the patient’s body]. The gel is designed to spontaneously compress at 37°C [the temperature of the human body], which places the physical pressure required to trigger the stem cells’ proliferative properties while inside the patient’s body. Continue reading

Stem Cells Make a ‘Dentin’ Tooth Decay.

Researchers have utilized low-intensity lasers to regenerate lost dentin in damaged teeth.

Researchers at the National Institute for Dental and Craniofacial Research have developed a method of utilizing autologous [the patient’s own] dental stem cells to regenerate damaged or decayed teeth.  In an animal model, as well as human cells in vitro [in a lab], the scientists treated the damaged teeth with low-intensity lasers, which prompted the stem cells located in the dental pulp to differentiate and grow into new, healthy dentin tissue. Continue reading

Hip Replacement Procedure Utilizes Autologous Stem Cells.

Scientists have utilized stem cells to aid in artificial hip replacement.

Doctors and Scientist at the Southampton General Hospital have successfully completed a hip transplant by using a titanium socket and a bone scaffold loaded with skeletal stem cells. The team, led by orthopedic surgeon Douglas Dunlap, 3D printed the titanium implant, and then added the bone graft filled with stem cells to the pelvis to encourage bone regrowth behind and around the metal replacement. Continue reading