Multiple Sclerosis Treatment Becomes Canada’s First MS Stem Cell Clinical Trial.

The University of Ottawa trial infuses MSCs to reduce inflammation in the central nervous systems of MS patients.

The Multiple Sclerosis Society of Canada has funded Canada’s first stem cell clinical trial to treat multiple sclerosis, conducted by researchers at the University of Ottawa. The trial, called MESCAMS [Mesenchymal Stem Cell Therapy for Canadian MS patients], will comprise MSC infusions to the central nervous system to utilize their ability to regulate autoimmune attacks and reduce inflammation in 40 MS patients. Continue reading

Hypoplastic Left Heart Syndrome Treatment Integrates Cardiac Stem Cells.

Initial trials of stem cell treatment for hypoplastic left heart syndrome have proven to be both safe and effective for children with the congenital defect.

Researchers from Okayama University have developed a method to treat the congenital heart defect known as hypoplastic left heart syndrome [HLHS] by utilizing a specialized cardiac stem cell.  In a Phase I clinical trial conducted on children suffering from HLHS, the scientists concluded that, because the young stem cells in children are more abundant and self-renewing than those in adults, intracoronary injection of stem cells is a safe and feasible approach to treating the condition. Continue reading

Multiple Sclerosis Trial Exhibits Positive Results of Stem Cell Therapy.

A five year phase II clinical trial has shown initial success in treating multiple sclerosis.

In a recent update of an ongoing five year clinical trial conducted by the Chicago Blood Cancer Institute, patients with relapsing-remitting multiple sclerosis have experienced suppression of disease-related inflammation as a result of hematopoietic stem cell transplantations.  The stem cells have the ability to regulate the autoimmune attack on the central nervous system, and have provided 82.8% of the patients with two years thus far of event-free disease remission. Continue reading

Lupus Therapy Incorporates Mesenchymal Stem Cells

Beijing researchers are capitalizing on the abilities of mesenchymal stem cells to reduce inflammation and promote cell growth to combat systemic lupus erythematosus.

In a recent clinical study conducted in Beijing, researchers are testing a treatment for patients suffering from systemic lupus erythematosus by administering autologous [the patient’s own] mesenchymal stem cells.  The researchers aim to capitalize on the unique abilities of MSCs to not only differentiate into a multitude of different cell types, but to reduce the autoimmune attack in patients affected by lupus as well. Continue reading

Multiple Sclerosis Therapy Incorporates Stem Cells in Clinical Trial

Mesenchymal Stem Cell Therapy has been deemed safe for patients suffering from multiple sclerosis.

A recent clinical trial conducted by the University of Genoa has determined that mesenchymal stem cell therapy to treat multiple sclerosis is indeed safe to perform on humans.  27 MS patients completed the study, which comprised an injection of the patient’s own [autologous] mesenchymal stem cells [MSCs] to reduce excessive inflammation caused by the patients’ own immune systems. None of the patients suffered any side effects from the injection. Continue reading

Multiple Sclerosis Therapy Incorporates Stem Cells in Clinical Trial

Mesenchymal Stem Cell Therapy has been deemed safe for patients suffering from multiple sclerosis.

A recent clinical trial conducted by the University of Genoa has determined that mesenchymal stem cell therapy to treat multiple sclerosis is indeed safe to perform on humans.  27 MS patients completed the study, which comprised an injection of the patient’s own [autologous] mesenchymal stem cells [MSCs] to reduce excessive inflammation caused by the patients’ own immune systems. None of the patients suffered any side effects from the injection. Continue reading

Muscle Degeneration Halted by Stem Cell Activation

A protein involved in muscle regeneration may be integral in activating stem cell-mediated muscle repair.

Researchers at Sanford-Burnham Medical research institute have developed a potential method of regenerating autologous [the patient’s own] stem cells to repair damaged muscle tissue in patients suffering from muscle-degenerative diseases.  The scientists found that the inhibition of protein STAT3 results in the replenishment of the body’s muscle stem cells, which in turn repair the muscles that are damaged by age, cancer, and diseases such as muscular dystrophy. Continue reading

New York Times: The Eruption of Stem Cell Therapies.

Mr. Edgar Irastorza is one of thousands of people already benefiting from the progression of stem cell based therapies.

As reported on the front page of the New York Times Science section, clinical applications of stem cell based therapies are accelerating at a rate that will revolutionize the medical field in a matter of years.  In the United States alone, there are currently over 4000 therapies in clinical trials for the treatment of heart disease, blindness, spinal cord injuries, diabetes, H.I.V., and other diseases, injuries, and traumas. Continue reading

Osteoarthritis Stem Cell Treatment in Clinical Trial

The transplantation of stem cells into areas affected by osteoarthritis allow lost cartilage tissue to regenerate.

In recent clinical trials, researchers at the National University of Ireland Galway have successfully utilized adult stem cells to treat patients with osteoarthritis.  The treatment involves recovering the patients’ own [autologous] stem cells and then injecting the stem cells into cartilage to stimulate the regeneration of lost tissue. Continue reading

ALS Research Capitalizes on Stem Cells.

A recent Mt. Sinai study for ALS is set to enter phase one clinical trials.

Researchers at the Cedars-Mt. Sinai Regenerative Medicine Institute, led by Dr. Robert H. Baloh, have devised a method to study and develop potential treatments for Amyotrophic Lateral Sclerosis [ALS] by utilizing patients’ stem cell-derived neurons.  In an example of what is referred to as translational genomics, researchers extract autologous (the patient’s own) stem cells, correct the defective gene causing the disease, and then, in a potential treatment protocol, transplant the cells back into the patient to reverse neural degeneration. Continue reading